ные спутниковых фазы суббури. Во центральном плазтемпературы. Поагнитных силовых выдавливается из кущего через эту оносферу, образуя

ие воспроизвести в трических полей и иями.

ри распределение ротной ионосфере ю долготе и экспохарактерным ши-

мируется область ния электронов в ых высотах, и обиженной магнитоеньшения концени увеличением их

аучного фонда и снтальных иссле-

ing surge // J. Geophys.

bstorms // Planet. Space

ionospheric disturbance orkshop, Abstracts. 1993.

модель термосферы, C. 612. using EISCAT // Adv.

rical model of the Earth's мений. Препринт № 95-

магнятосфере // Гео-

ith substorms // J. Geo-

d current // J. Geophys.

in the night-time sector

particle precipitation in

bstorm plasma sheet // J.

Поступила в редакцию 19.07.95

ГЕОМАГНЕТИЗМ И АЭРОНОМИЯ

1996

№ 4

УДК 550.388

Том 36

© 1996 г. М.Г. Деминов, А.Т. Карпачев, В.В. Афонин, С.К. Аннакулиев

ДИНАМИКА СРЕДНЕШИРОТНОГО ИОНОСФЕРНОГО ПРОВАЛА В ПЕРИОДЫ БУРЬ: ВОССТАНОВИТЕЛЬНАЯ ФАЗА

Для неосвещенного времени суток местной зимы и равноденствия построена эмпирическая модель динамики положения минимума главного ионосферного провала (ГИП) на высотах 430 ± 50 км в восстановительную фазу интенсивной магнитной бури, точность которой для околополуночных и послеполуночных часов приблизительно в три раза выше точности известных моделей. Это достигнуто выделением восстановительной фазы магнитной бури, фильтрацией ГИП от кольцевого ионосферного провала (КИП) и введением более адекватного, чем *Кр*, индикатора магнитной активности для положения ГИП – магнитного поля кольцевого тока *DR*. Для тех же географических условий впервые построена эмпирическая модель положения минимума КИП. На основе качественного анализа получено, что КИП тесно связан с кольцевым током магнитосферы. Из этой связи следует, что модель КИП может быть использована для определения инвариантной широты максимума скорости нагрева ионосферной плазмы в области кольцевого тока магнитосферы.

Введение

Под среднеширотным ионосферным провалом понимается область пониженной электронной концентрации, которая расположена вблизи экваториальной границы диффузных высыпаний электронов (ГДВ) с энергиями 0,5–1 кэВ (см., например, [1]). В главную фазу магнитной бури в этой области обычно фиксируется один минимум в широтном распределении электронной концентрации ионосферной плазмы [2]. В этот период положение минимума среднеширотного ионосферного провала коррелирует с величиной магнитного поля кольцевого тока DR лучше, чем с Kp-инлексом [3].

В восстановительную фазу магнитной бури структура среднеширотного ионосферного провала становится более сложной. Качественный анализ данных зондовых измерений со спутника "Космос-900" на высотах 400–500 км для неосвещенного времени суток показал, что в эту фазу среднеширотный ионосферный провал можно представить состоящим не из одного, а из двух провалов [2]. Один из них – ГИП имеет тенденцию располагаться вблизи ГДВ; другой – кольцевой ионосферный провал (КИП), по-видимому, связан с кольцевым током магнитосферы [2]. Возможность одновременного существования двух отчетливо разнесенных по широте провалов не отражена ни в одной из известных эмпирических моделей положения среднеширотного ионосферного провала (см., например, [1]). Более того, при наличии на субавроральных широтах двух провалов сам термин "положение минимума электронной концентрации среднеширотного ионосферного провала" становится неоднозначным.

Для преодоления этого противоречия целесообразен поиск количественных закономерностей изменения положений ГИП и КИП как самостоятельных структур в восстановительную фазу магнитной бури. Знание этих закономерностей важно и для идентификации этих провалов по экспериментальным данным, поскольку ГИП легко

перепутать с КИП, особенно, когда фиксируется только один из этих провалов [2]. Поиск этих закономерностей на основе анализа данных зондовых измерений со спутника "Космос-900" на высотах 430 ± 50 км для неосвещенного времени суток местной зимы и равноденствия в периоды восстановительных фаз 16 магнитных бурь 1978–1979 гг. и является целью данной работы.

Индексы магнитной активности

Ниже анализируются корреляции инвариантной широты $\Phi_T(T)$ минимума ГИП и инвариантной широты $\Phi_R(T)$ минимума КИП, которые измерены со спутника "Космос-900" в мировое время T, с $DR(T - T_0)$ и Kp(T), где T_0 – характерное время задержки изменения Φ_T или Φ_R относительно DR. Время T_0 определяется из условия наиболее высокой корреляции положения ГИП или КИП с DR. Используемая зависимость магнитного поля кольцевого тока магнитосферы DR от Dst-индекса и параметров солнечного ветра совпадает с приведенной в [3]:

$$DR = Dst - k\sqrt{P + 14},\tag{1}$$

где DR и Dst измеряются в нTл; $P = 0,01nV^2$ – давление солнечного ветра; V – его скорость, в км/с; n – концентрация, см⁻³. Коэффициент k зависит от величины и направления вертикальной составляющей межпланетного магнитного поля B_z : k = 0,2; 0,25 и 0,3 при $B_z > 1$; $1 > B_z > -1$ и $B_z < -1$ соответственно. Для анализа используются данные со спутника "Космос-900" о положениях ионосферных провалов, полученных по зондовым измерениям концентрации электронов на высотах 430 ± 50 км в неосвещенное время суток (18–06 MLT) местной зимой и в равноденствие 1977–1979 гг. Они соответствуют восстановительным фазам 16 магнитных бурь, для которых имеются данные о параметрах солнечного ветра [4], необходимые для расчета DR.

Анализ зависимости корреляций $\Phi_T(T)$ и $\Phi_R(T)$ с $DR(T - T_0)$ от T_0 для всего указанного массива данных показал, что эти корреляции максимальны при $T_0 = 1$. Здесь и ниже время измеряется в часах, $DR(T - T_0) - в$ нТл. Для краткости записи, времена T и T_0 опускаются, т.е. записи $\Phi_T \sim Kp$ и $\Phi_R \sim DR$ означают, что $\Phi_T(T) \sim \sim Kp(T)$ и $\Phi_R(T) \sim DR(T - T_0)$, где $T_0 = 1$.

Модели положения ГИП и КИП в восстановительную фазу магнитной бури

Значения Φ_T , полученные по данным "Космос-900" для восстановительных фаз 16 магнитных бурь, соответствуют следующим диапазонам изменений индексов магнитной активности: -4 > DR > -62; -19 > DR > -234 и -13 > DR > -234 для интервалов местного магнитного времени 18-22, 22-02 и 02-06 MLT соответственно. Следовательно, для предполуночных часов (18-22 MLT) данные измерений Φ_T относятся, в основном, к относительно поздней стадии восстановительной фазы интенсивной магнитной бури. По этой причине приведенные ниже статистические характеристики моделей для предполуночных часов являются ориентировочными. Для построения модели по этим исходным данным о положении ГИП потребуем, чтобы искомая модель $\Phi_T(DR, t, \Lambda)$ для предельных случаев очень низкой (DR = 0) и высокой (например, DR = -500) магнитной активностей не противоречила модели, приведенной в [3]:

$$\Phi_T(0, t, \Lambda) = \Phi_0 - \Phi(t) - \Phi(\Lambda); \quad \Phi_T(-500, t, \Lambda) = \Phi_L(t) = \Phi_L(0) - 0, 5\Phi(t), \tag{2}$$

$$\Phi(t) = 0,7(t-0,1t^2-0,01t^3),$$

46

$$\Phi^{N}(\Lambda) = \cos(2\Lambda - 45) - \cos(\Lambda + 40); \quad \Phi^{S}(\Lambda) = 2\cos(\Lambda + 35).$$

Здесь и в градусах полуночи, и южного в восстано статистиче в градусах "Космос-90 $\Phi_T(DR,$

Модель ионосфері и выше ші активності вплоть до высоким ш Качеств интенсивно к более вы и КИП к (движения) период пол на поздней положения

$$\Phi_R(DR, t)$$

 $\Phi_R(DR, t)$

где $\Phi_R(0)$ = Статистич что ни при экваториа к полюсу при DR ≤ и $\Phi_R(DR, t)$ моделей. І ионосферн широтам І отчетливо этой лока высоким і практичес В предель границами Более

представл соместно приведени ванных t, где $\Phi_T(DR)$ функции

(3)

(4)

и из этих провалов [2]. ридовых измерений со ценного времени суток фаз 16 магнитных бурь

(7) минимума ГИП и инены со спутника "Кос-– характерное время пределяется из условия с DR. Используемая ы DR от Dst-индекса и

(1)

нечного ветра; V - егоссит от величины и натного поля B_z : k = 0,2; анализа используются овалов, полученных по 430 ± 50 км в неосветвие 1977–1979 гг. Они для которых имеются счета DR.

 $-T_0$) от T_0 для всего ксимальны при $T_0 = 1$. Для краткости записи, вначают, что $\Phi_T(T) \sim$

у магнитной бури

есстановительных фаз иенений индексов маг-> -234 для интервалов ответственно. Следоиерений Φ_T относятся, ой фазы интенсивной иеские характеристики ыми. Для построения буем, чтобы искомая и (DR = 0) и высокой ила модели, приведен-

$$(0) - 0, 5\Phi(t),$$
 (2)
(3)
(4)

Здесь и ниже инвариантная широта Ф и географическая долгота Λ измеряется в градусах, местное магнитное время t отсчитывается от полуночи (t = MLT-24 до полуночи, t = MLT после полуночи), индексы N и S соответствуют $\Phi(\Lambda)$ для северного и южного полушарий, $\Phi = 65,4$; $\Phi_L(0) = 41,4$. Эмпирическая модель положения ГИП в восстановительную фазу бури для интервала 18-06 MLT, полученная на основе статистического анализа данных "Космос-900", стандартное отклонение модели о в градусах широты и коэффициент корреляции модели R с исходными данными "Космос-900":

$$\Phi_T(DR, t, \Lambda) = \Phi_L(t) + [\Phi_T(0, t, \Lambda) - \Phi_L(t)] \exp[0,009DR] \pm 1.5; \quad R = 0.96.$$
(5)

Модель (5) удовлетворяет условиям (2): ни при каких значениях DR главный ионосферный провал не может сместиться ниже предельной широты $\Phi_L(t)$ и выше широты $\Phi_T(0, t, \Lambda)$. Из модели (5) следует, что при уменьшении магнитной активности в восстановительную фазу магнитной бури ГИП движется к полюсу вплоть до высокоширотной границы $\Phi_T(0, t, \Lambda)$. При таком движении ГИП к более высоким широтам зависимости $\Phi_T(DR, t, \Lambda)$ от t и Λ усиливаются.

Качественный анализ показал [2], что на начальной стадии восстановительной фазы интенсивной бури ГИП и КИП совпадают, т.е. воспринимаются как один движущийся к более высоким широтам провал. На более поздней стадии скорости движения ГИП и КИП к более высоким широтам различаются, и высокоширотная граница этого движения для КИП оказывается существенно экваториальнее, чем для ГИП. В этот период положения ГИП и КИП становятся различными, и это различие максимально на поздней стадии восстановительной фазы интенсивной бури. Эмпирическая модель положения КИП в восстановительную фазу бури, полученная на основе статистического анализа данных "Космос-900", отражает эти закономерности:

$$\Phi_R(DR, t, \Lambda) = \Phi_T(DR, t, \Lambda) \quad \text{при} \quad DR \le DR_0;$$

$$\Phi_R(DR, t, \Lambda) = \Phi_R(0) + [\Phi_T(DR_0, t, \Lambda) - \Phi_R(0)] \cdot (DR/DR_0)^2 \text{ при} DR \ge DR_0, \tag{6}$$

где $\Phi_R(0) = 56$, $DR_0 = -100$, $\Phi_T(DR, t, \Lambda)$ и $\Phi_T(DR_0, t, \Lambda)$ определяются уравнением (5). Статистические характеристики модели (6): $\sigma = 0.9$; R = 0.96. Из модели (6) следует, что ни при каких значениях DR кольцевой ионосферный провал не может сместиться экваториальнее $\Phi_L(t)$ и полюснее $\Phi_R(0)$. Высокоширотная граница движения КИП к полюсу $\Phi_R(0)$ не зависит от местного времени и долготы. ГИП и КИП совпадают при $DR \leq DR_0$. Для интервала $DR_0 < DR < -60$ различие между $\Phi_T(DR, t, \Lambda)$ и $\Phi_R(DR, t, \Lambda)$ обычно не превышает величину отклонения исходных данных от этих моделей. Поэтому в восстановительную фазу бури при DR < -60 главный и кольцевой ионосферные провалы обычно воспринимаются как один движущийся к более высоким широтам провал. При дальнейшем уменьшении магнитной активности ГИП и КИП отчетливо различаются как по области локализации, так и по характеру зависимости этой локализации от магнитной активности: ГИП продолжает движение к более высоким широтам, а КИП останавливается вблизи $\Phi_R(0)$. В этот период $\Phi_R(DR, t, \Lambda)$ практически не зависит от DR, t и Λ , а зависимость $\Phi_T(DR, t, \Lambda)$ от t и Λ усиливается. В предельном случае DR = 0 разница между положениями ГИП и КИП определяется границами $\Phi_T(0, t, \Lambda)$ и $\Phi_R(0)$ и составляет в среднем ~10°.

Более наглядно это видно из рисунка, где для фиксированных t = 0 и $\Lambda = 36$ представлены зависимости положений ГИП и КИП от DR по моделям (5) и (6) соместно с приведенными к этим значениям t и Λ данными "Космос-900". Процедура приведения, например, измеренного значения широты провала $\Phi_T(t, \Lambda)$ при фиксированных t, Λ и DR к t = 0 и $\Lambda = 36$: $\Phi_T(0,36) = \Phi_T(t, \Lambda) - \Phi_T(DR, t, \Lambda) + \Phi_T(DR, 0,36)$, где $\Phi_T(DR, t, \Lambda)$ и $\Phi_T(DR, 0,36)$ определяются по модели (5). Отметим, что при $\Lambda = 36$ функции $\Phi^N(\Lambda)$ и $\Phi^S(\Lambda)$ совпадают. Из рисунка и моделей (5) и (6) следует, что только

Зависимости инвариантных широт Φ минимумов главного (*a*) и кольцевого (*б*) ионосферных провалов от *DR* в полночь на географической долготе 36° в периоды восстановительной фазы магнитных бурь по моделям (5) и (6) – сплошная и штриховая линии; по приведенным к полуночи и долготе 36° данным "Космос-900" – темные и светлые кружки

при разделении ионосферных провалов на ГИП и КИП удается установить количественные закономерности динамики среднеширотного ионосферного провала на рассматриваемых высотах в восстановительную фазу магнитной бури при DR > -60.

Модели (5) и (6) позволяют предсказать локализацию ГИП и КИП в восстановительную фазу бури и отличить ГИП от КИП по экспериментальным данным. Однако из-за недостаточно большого набора исходных данных, эти модели не позволяют определить количественно вероятности появления ГИП и КИП при DR < -60. Поэтому приведем качественные характеристики этих вероятностей. Анализ показывает, что в восстановительную фазу интенсивной бури при DR > -60 далеко не всегда ГИП и КИП наблюдаются одновременно как два отчетливых разнесенных по широте провала. В предполуночные часы обычно ГИП выражен более отчетливо, чем КИП, и часто по экспериментальным данным КИП не фиксируется. Для послеполуночных часов характерна противоположная тенденция: при -30 > DR > -60 часто фиксируется только КИП, а ГИП появляется как дополнительный провал при более низкой магнитной активности. В околополуночные часы при -30 > DR > -60 вероятности появления ГИП или КИП не сильно различаются, и два отчетливо разнесенных по широте провала могут фиксироваться одновременно. Дополнительный анализ показывает, что для слабой магнитной бури вероятность появления КИП понижена. Для появления КИП в восстановительную фазу, по-видимому, необходимо, чтобы к концу главной фазы бури провал сместился экваториальнее $\Phi_R(0)$. Следует отметить, что иногда КИП фиксировался через 1-2 сут после окончания бури, в том числе, и в вечерние часы.

Сравнение с другими моделями положения ГИП и КИП

Кр-индекс наиболее часто используется как индикатор магнитной активности для положения ионосферного провала на субавроральных широтах (см., например, [1]). Для оценки эффективности введения Кр при получении зависимости положения ГИП от магнитной активности используем тот же самый массив данных "Космос-900", что и при построении модели (5).

Эмпиј вала 18--Ф_Т(Кр

> где $\Phi(t)$ ется мен зависят относято интенсиі моделей (5) являе Практ концент каждый Анализ 1 когда вм построен полная и условий представ

$\Phi_T(Kp)$

Точно Наприме использу (8) для ч использу дартного часов пр часов ра к модел: Статист жении I для 22-(Итак

ным, че вительн приблиз включа

Стандартные отклонения о в градусах широты и коэффициенты корреляции R моделей (5), (7) и (8) с данными "Космос-900"

Иодель	MLT	σ	R
	18-22	1,9	0,91
(5)	22-02	1,2	0,97
	02-06	1,7	0,95
	18-22	1,9	0,90
(7)	22-02	2,2	0,91
	02-06	3,2	0,81
	18-22	2,2	0,89
(8)	22-02	3,6	0,90
	0206	4,7	0,81

Эмпирическая модель положения ГИП в восстановительную фазу бури для интервала 18–06 MLT, полученная на основе статистического анализа этих данных:

 $\Phi_{T}(Kp, t, \Lambda) = 62,7 - 2,3Kp - 0,5\Phi(t) - [\Phi(t) + \Phi(\Lambda)] \exp[-0,1Kp] \pm 2,6; R = 0,9, (7)$

где $\Phi(t)$ и $\Phi(\Lambda)$ определяются соотношениями (3) и (4). Видно, что эта модель является менее точной, чем модель (5). Статистические характеристики моделей (5) и (7) зависят от местного времени (см. таблицу). Данные "Космос-900" для 18–22 МLT относятся, в основном, к относительно поздней стадии восстановительной фазы интенсивной магнитной бури. Из таблицы видно, что для этих условий точности моделей (5) и (7) совпадают. Для околополуночных и послеполуночных часов модель (5) является существенно более точной, чем модель (7).

Практически все построенные ранее эмпирические модели положения минимума концентрации электронов на субавроральных широтах основаны на массивах данных, каждый из которых включает в себя как спокойные условия, так и все фазы бурь. Анализ показывает, что для таких наборов данных относительное число случаев, когда вместо ГИП фиксируется КИП, обычно невелико. Можно считать поэтому, что построенные таким способом эмпирические модели соответствуют ГИП. Наиболее полная из таких моделей построена, в основном, по данным "Космос-900" для ночных условий местной зимой 1978–1979 гг. [5]. Для высоты 430 км модель [5] можно представить в виде:

$$\Phi_{T}(Kp, t, \Lambda) = 65.4 - 2.2Kp - 0.5t - (1 - 0.1Kp)\Phi(\Lambda).$$
(8)

Точность этой модели характеризует точность известных моделей такого типа. Например, при $\Phi(\Lambda) = 0$ уравнение (8) практически не отличается от наиболее часто используемой модели [6]. В таблице приведены статистические характеристики модели (8) для того же самого набора данных "Космос-900" о положении ГИП, который использовался при получении зависимостей (5) и (7). Видно, что по величине стандартного отклонения точность модели (5) для околополуночных и послеполуночных часов приблизительно в три раза выше точности модели (8). Для предполуночных часов разница между точностями моделей (5), (7) и (8) незначительна. Учет поправок к модели [6], связанных с межпланетным магнитным полем [7], не меняет ситуацию. Статистические характеристики модели [7] по тем же данным "Космос-900" о положении ГИП: $\sigma = \pm 3.6^\circ$, R = 0.88 для всего интервала 18-06 MLT; $\sigma = \pm 3.6^\circ$, R = 0.85для 22-02 MLT; $\sigma = \pm 4.2^\circ$, R = 0.86 для 02-06 MLT.

Итак, для околополуночных и послеполуночных часов индекс DR является адекватным, чем Kp, индикатором магнитной активности для положения ГИП в восстановительную фазу интенсивной магнитной бури. Для этих условий точность модели (5) приблизительно в два и три раза выше точностей модели (7) и известных моделей, включая модель (8), соответственно. Для предполуночных часов (18–22 MLT) на от-

) ионосферных провалов фазы магнитных бурь по долготе 36° данным "Кос-

-200

тся установить колисферного провала на **б**ури при *DR* > -60. и КИП в восстаноентальным данным. эти модели не позво-КИП при *DR* < -60. стей. Анализ показы--60 далеко не всегда снесенных по широте ичетливо, чем КИП, ля послеполуночных 0 часто фиксируется при более низкой ? > -60 вероятности иво разнесенных по ный анализ показы-ИП понижена. Для имо, чтобы к концу едует отметить, что в том числе, и в ве-

КИП

ной активности для , например, [1]). Для положения ГИП от в "Космос-900", что носительно поздней стадии восстановительной фазы интенсивной магнитной бури разница между точностями (5) и (7) не существенна.

Анализ показал, что использование *Кр*-индекса при построении эмпирической модели положения КИП в восстановительную фазу бури приводит к относительно большим ошибкам. Коэффициент корреляции такой модели с данными "Космос-900" не превышает 0,82, и введение *Кр* как индикатора магнитной активности для положения КИП не целесообразно. Модель (6), по-видимому, является первой эмпирической моделью положения КИП.

Обсуждение

Рассмотрим возможные причины динамики среднеширотного ионосферного провала в восстановительную фазу магнитной бури, которые следуют из моделей (5) и (6).

К концу главной фазы интенсивной магнитной бури среднеширотный провал, граница диффузных высыпаний электронов, плазмопауза в экваториальной плоскости магнитосферы и максимум плотности энергии ионов кольцевого тока оказываются на самых низких широтах (L-оболочках), но, по-видимому, никогда не пересекают экваториальную границу $\Phi_L(t)$. При этом значительная доля плотности энергии кольцевого тока обеспечивается ионами O⁺, особенно для E < 30 кэВ [8]. В восстановительную фазу магнитной бури все эти структуры смещаются к более высоким широтам до своих характерных для спокойных условий значений.

Для интенсивных бурь можно различать две стадии восстановительной фазы. Первая быстрая стадия с характерным временем ~5-9 ч, по-видимому, обусловлена потерями из кольцевого тока энергичных ионов О+, вторая существенно более медленная стадия обусловлена потерями энергичных ионов Н+ [8]. К концу первой стадии все перечисленные структуры, по-видимому, оказываются вблизи L = 3,6, что соответствует $\Phi = 55^{\circ}$. К этому времени высотное распределение электронной концентрации в экваториальной плоскости магнитосферы начинает становиться двухступенчатым: кроме внутренней плазмопаузы вблизи L = 3, на более высоких L-оболочках формируется внешняя плазмопауза (см. об'зор [9]). Значение L = 3 соответствует среднему положению внутренней плазмопаузы [9], максимума плотности энергии ионов остаточного кольцевого тока [8, 10] и практически совпадает с граничной широтой $\Phi_{R}(0)$ для КИП. Это означает, что при последующем уменьшении магнитной активности внутренняя плазмопауза, кольцевой ток магнитосферы и КИП остаются вблизи L = 3. Поэтому на второй стадии восстановительной фазы бури ГИП и КИП отчетливо различаются. На этой стадии из всех перечисленных структур только ГИП, ГДВ и, возможно, внешняя плазмопауза продолжает движение к более высоким значениям L.

Из сопоставления перечисленных структур можно получить, что широта минимума КИП расположена вблизи внутренней плазмопаузы, но на несколько меньших L-оболочках. Образование этого минимума на высотах 350-450 км, по-видимому, связано со следующей цепочкой процессов: кулоновские взаимодействия ионов кольцевого тока с окружающими электронами внутри плазмосферы, в которых важную роль играют ионы O⁺ с энергиями меньше 20 кэВ [11]; нагрев окружающих электронов в области этого взаимодействия; формирование пика температуры электронов и SARдуг на ионосферных высотах через передачу тепла вдоль L-оболочки из области нагрева [11]; увеличение коэффициента рекомбинации ионосферных электронов на высотах F-области через колебательно-возбужденные компоненты, такие как N_2^{\ddagger} и O_2^{\ddagger} , в области пика температуры электронов (см., например, [1]) и, как следствие, формирование КИП. Дополнительной причиной уменьшения концентрации ионосферных электронов F2-слоя может быть последовательность процессов: высыпания энергичных ионов O⁺ из кольцевого тока; нагрев термосферы; увеличение молекулярных компонент в составе термосферы на высотах F2-слоя и увеличение скорости рекомбинации ис ными прич нитосферь на восстан ионосферн

Выше с вительной к более в ний. Измен той являет По-видимо ГДВ также щихся эле щественно может не ф и в характ частности, структур с послеполун магнитной магнитной

положить, На второ релаксация переходе о а точности ГИП к хар быстрее, че и для ГДВ формирую долгота изконвекции ствие, поло временем я MLT из-за в в околопол ГДВ и ГИІ быстрее, ч высокой к сравнению (

1. Для н эмпирическ в восстанов отклонения приблизите делением в и введение: положения ней стадии и с *Кр* не стол к невозмуще

ой магнитной бури

мпирической модеосительно большим "Космос-900" не ости для положения вой эмпирической

юсферного провала делей (5) и (6).

широтный провал, иальной плоскости ока оказываются на е пересекают экваэнергии кольцевого росстановительную соким широтам до

овительной фазы. мому, обусловлена ственно более медонцу первой стадии я L = 3,6, что соотктронной концентановиться двухстуысоких *L*-оболочках = 3 соответствует плотности энергии падает с граничной нышении магнитной ы и КИП остаются 🛿 бури ГИП и КИП уктур только ГИП, более высоким зна-

р широта минимума ько меньших L-обоидимому, связано со в кольцевого тока с жную роль играют ющих электронов злектронов и SARочки из области нак электронов на вытакие как N_2^{\pm} и O_2^{\pm} , как следствие, форрации ионосферных ысыпания энергичение молекулярных не скорости рекомбинации ионосферных электронов [12]. Эти процессы, по-видимому, являются основными причинами формирования КИП. Тесная связь КИП с кольцевым током магнитосферы оправдывает название этого провала. Из этой связи следует также, что на восстановительной фазе бури инвариантная широта максимума скорости нагрева ионосферной плазмы в области кольцевого описывается уравнением (6).

Выше отмечалось, что на второй относительно медленной стадии восстановительной фазы бури КИП останавливается, а ГИП и ГДВ продолжают двигаться к более высоким широтам до своих характерных для спокойных условий значений. Изменение потока высыпающих электронов (с энергиями около 1 кэВ) с широтой является одной из основных причин формирования полярной стенки ГИП [13]. По-видимому, для формирования отчетливого ГИП в этот период необходимо, чтобы ГДВ также была отчетливой, т.е. происходило резкое изменение потока высыпающихся электронов с широтой. Обычно в предполуночные часы ГДВ является существенно более отчетливой, чем в послеполуночные [13]. По этой причине ГИП может не фиксироваться в послеполуночные часы. Связь ГИП с ГДВ прослеживается и в характере зависимости положения этих структур от магнитной активности. В частности, из модели [14] для ГДВ и модели (8) для ГИП следует, что корреляция этих структур с Кр максимальна для интервала 18-21 MLT. Для околополуночных и послеполуночных часов индекс DR является более адекватным, чем Kp, индикатором магнитной активности для положения ГИП в восстановительную фазу интенсивной магнитной бури (см. таблицу). На основе тесной связи ГИП с ГДВ можно предположить, что такая же закономерность характерна и для ГДВ.

На второй относительно медленной стадии восстановительной фазы магнитной бури релаксация DR существенно отстает от уменьшения Kp. Из таблицы видно, что при переходе от вечерних к околополуночным часам точность модели (5) возрастает, а точности моделей (7) и (8) уменьшаются. Это означает, что релаксация положения ГИП к характерному для спокойных условий значению в вечерние часы происходит быстрее, чем в околополуночные. По-видимому, такая же закономерность характерна и для ГДВ. Этот эффект, возможно, связан с тем, что высыпания электронов, формирующих ГДВ, происходят почти локально в системе координат L-оболочка долгота из-за относительно низкого значения электрического поля магнитосферной конвекции на субавроральных широтах в восстановительной фазе бури. Как следствие, положение ГДВ при фиксированном MLT определяется не только характерным временем жизни этих электронов, но и положением ГДВ в предшествующем секторе MLT из-за вращения Земли. В вечерние часы ГДВ и ГИП расположены полюснее, чем в околополуночные часы. В результате в предполуночные часы релаксация положений ГДВ и ГИП к характерным для спокойных условий значениям будет происходить быстрее, чем в околополуночные часы. Формально это приводит к относительно высокой корреляции положений ГИП и ГДВ с Кр в предполуночные часы по сравнению с послеполуночными.

Выводы

1. Для неосвещенного времени суток местной зимы и равноденствия построена эмпирическая модель динамики положения минимума ГИП на высотах 430 ± 50 км в восстановительную фазу интенсивной магнитной бури. По величине стандартного отклонения точность данной модели для околополуночных и послеполуночных часов приблизительно в три раза выше точностей известных моделей. Это достигнуто выделением восстановительной фазы магнитной бури, фильтрацией ГИП от КИП и введением более адекватного, чем Kp, индикатора магнитной активности для положения ГИП – магнитного поля кольцевого тока DR. Для вечерних часов на поздней стадии восстановительной фазы эффективность использования DR по сравнению с Kp не столь значительна из-за относительно быстрой релаксации положения ГИП к невозмущенному значению в эти часы. Аналогичная зависимость точности модели от местного времени, по-видимому, характерна и для ГДВ. Относительно быстрая релаксация положений ГИП и ГДВ к невозмущенному значению в предполуночные часы может быть связана с эффектом вращения Земли, т.е. зависимостью положения этих структур при фиксированном MLT от их положения в предыдущем секторе MLT.

2. Для тех же геофизических условий построена эмпирическая модель положения минимума КИП, в которой индикатором магнитной активности является DR. Oна, по-видимому, является первой эмпирической моделью положения минимума КИП. На основе качественного анализа получено, что КИП тесно связан с кольцевым током магнитосферы. Из этой связи следует, что модель положения КИП может быть использована для определения инвариантной широты максимума скорости нагрева ионосферной плазмы в области кольцевого тока магнитосферы. Использование *Кр* для описания изменения положения КИП не целесообразно.

3. Построенные эмпирические модели позволяют предсказать локализацию ГИП и КИП в восстановительную фазу бури. Они важны и для идентификации этих провалов по экспериментальным данным, поскольку ГИП легко перепутать с КИП, особенно, когда фиксируется только один из этих провалов.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (грант 95-05-14226), Международного научного фонда и Правительства России (грант J 41100).

СПИСОК ЛИТЕРАТУРЫ

- 1. Rodger A.S., Moffett R.J., Quegan S. The role drift in the formation of ionisation troughs in the mid- and highlatitude ionosphere – a review // J. Atmos. Terr. Phys. 1992. V. 54. No. 1. P. 1.
- 2. Деминов М.Г., Карпачев А.Т., Афонин В.В. и др. Динамика среднеширотного ионосферного провала в периоды бурь. 1. Качественная картина // Геомагнетизм и аэрономия. 1995. Т. 35. № 1. С. 73.
- 3. Деминов М.Г., Карпачев А.Т., Афонин В.В. и др. Динамика среднеширотного ионосферного провала в периоды бурь: главная фаза // Геомагнетизм и аэрономия. 1995. Т. 35. № 6. С. 69.
- 4. Cousens D.A., King J.H. Interplanetary medium data book 1977-1985. Greenbelt: WDCA RS, 1986. P. 860.
- 5. Деминов М.Г., Карпачев А.Т., Афонин В.В. и др. Изменения положения главного ионосферного провала в зависимости от долготы и геомагнитной активности // Геомагнетизм и аэрономия. 1992. Т. 32. № 5. С. 185.
- 6. Kohnlein W., Raitt W.J. Position of the mid-latitude trough in the topside ionosphere as deduced from ESRO-4 observation // Planet. Space Sci. 1977.V. 25. No. 3. P. 600.
- 7. Бенькова Н.П., Беспрозванная А.С., Козлов У.Ф. и др. Влияние ММП на положение главного ионосферного провала по данным ИСЗ "Интеркосмос-19" // Геомагнетизм и аэрономия. 1989. Т. 24. № 5. С. 863.

8. Hamilton D., Gloeckler G., Ipavich F. et al. Ring curren development during the great geomagnetic storm of February 1986 // J. Geophys. Res. 1988. V. 93. No. A12. P. 14343.

- 9. Singh N., Horwitz J.L. Plasmasphere refilling: recent observation and modeling // J. Geophys. Res. 1991. V. 97. No. A2. P. 1049.
- 10. Lui A.T.Y., McEntire R.W., Krimigis S.M. et al. Evolution of the ring current during two geomagnetic storms // J. Geophys. Res. 1987. V. 92. No. A7. P. 7459.
- 11. Kozyra J.U., Shelley E.G., Comfort R.H. The role of ring current O⁺ in the formation of stable auroral red arcs // J. Geophys. Res. 1987. V. 92. No. A7. P. 7487.
- 12. Fuller-Rowell T.J., Ress D., Tinsley B.A. et al. Modlling the response of the thermosphere and ionosphere to geomagnetic storms: effects of a mid-latitude heat sourse // Adv. Space Res. 1990. V. 10. No 6. P. 215.
- 13. Гальперин Ю.И., Сивцева Л.Д., Филиппов В.М., Халипов В.Л. Субавроральная верхняя ионосфера. Новосибирск.: Наука, 1990. 192 с.
- 14. Gussenhoven M.S., Hardy D.A., Heinemann N. Systematics of the equatorward diffuse auroral boundary // J. Geophys. Res. 1983. V. 88. No. A7. P. 5692.

Институт земного магнетизма, ионосферы и распространения радиоволн РАН Институт космических исследований РАН Поступила в редакцию 06.07.95

После доработки 15.11.95 Том 36

УДК 530.837.2

ГЕО

Предлож по данным градиентног спектров син больше инф устойчивост с использова среднеширот

Гидромагни ным данным с венно-спектрал ным способом ных пульсаций цезионных изм разносом вдоль является харак резонансной об от источника и резонатора. Раз принципиальну Градиентный м ного резонато [2-4]. Модифиі ления резонан неоднородност пользует для о станциями, либ фазовых спект В данной ра

ы данной ра ных измерений цию. Для апро колебаний на м Это событие исследовалось в эффектов.